WEB PAGE FOR CHAPTER 18

MULTIPLE CHOICE QUESTIONS

1 A factor can be considered to be an underlying latent variable:
(a) on which people differ
(b) that is explained by unknown variables
(c) that cannot be defined
(d) that is influenced by observed variables
(e) none of these

2 Variables that are orthogonal are:
(a) moderately correlated with each other
(b) perfectly related to each other
(c) rotated
(d) totally unrelated to each other
(e) none of these

3 Factor analysis is concerned with:
(a) analysis of correlation matrices
(b) correlating mean values
(c) frequency counts
(d) abstract concepts
(e) none of the above

4 Factor analysis requires that variables:
(a) Are measured at nominal level
(b) Are abstract concepts
(c) Are not related to each other
(d) Are related to each other
(e) Are standardized

5 The decision about how many factors to retain is based on:
(a) personal choice
(b) Kaiser's rule
(c) Scree test
(d) Both (a) and (c)
(e) Both (b) and (c)

6 The unrotated matrix is rotated because:
(a) the calculations are easier
(b) more factors are extracted
(c) rotated factors are significant
(d) interpretation is easier
(e) all of these

Kaiser's rule says:
(a) select all factors where $\mathrm{p}<.5$
(b) select factors with eigenvalues that add up to 1
(c) select factors with eigenvalues 1 and above
(d) select the factor with the biggest eigenvalue
(e) none of the above

8 It is possible to extract:
(a) more variables than factors
(b) more factors than variables
(c) as many factors as there are intercorrelations
(d) only factors with eigenvalues above 1
(e) none of the above

9 Look at the following table and state:
(a) how many factors would you keep: $1,4,6$, or 8 ?
(b) how much variance is accounted for in a four factor solution: 5.930, 48.410, 46.193, or 1.305?
(c) how many variables were included in this study: $2,4,6$, or 8 ?

Component	Eigenvalues	\% of variance	Cumulative \%	Rotation sums of squared loadings	\% of variance	Cumulative \%
1	5.804	26.38	26.380	5.235	23.795	23.795
2	2.030	9.227	35.611	2.438	11.081	34.877
3	1.511	6.869	42.480	1.673	7.603	42.480
4	1.305	5.930	48.410	1.324	5.713	46.193
5	1.176	5.344	53.754	0.991	3.478	49.671
6	1.139	5.177	58.931	0.951	3.113	52.784
7	0.902	4.420	63.351	0.915	2.512	55.296
8	0.863	3.925	67.276	0.876	1.978	57.274

SPSS ACTIVITIES

1 Access SPSS Chapter 18 Data File C and conduct a Factor Analysis on the attitude questionnaire items to determine the factor structure of the attitude scale. There are 10 items equally divided between attitudes to two brands of a product responded to by 104 persons. Write an interpretation of the printout and discuss the results in class.

DISCUSSION QUESTIONS

1 Discuss in groups: 'Factor analysis has the spurious aura of objectivity but close inspection reveals a number of crucial subjective elements'. Critically evaluate this statement.

2 Work in groups and carefully inspect the two tables below and answer the questions.
(a) How many factors are important? What cumulative percentage of variance is not explained by their loadings when rotated?
(b) Is a strong general factor apparent? Give reasons for your answer.
(c) Could you provide a distinctive name with reasons for each of the extracted rotated factors?

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	$\%$ of Variance	$\begin{array}{\|c} \hline \text { Cumulative } \\ \% \end{array}$	Total	$\%$ of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$
1	5.161	39.702	39.702	5.161	39.702	39.702	3.675	28.272	28.272
2	1.875	14.425	54.128	1.875	14.425	54.128	2.633	20.251	48.523
3	1.057	8.128	62.256	1.057	8.128	62.256	1.785	13.733	62.256
4	. 932	7.170	69.426						
5	. 772	5.935	75.362						
6	. 675	5.191	80.552						
7	. 585	4.501	85.053						
8	. 473	3.637	88.690						
9	. 427	3.281	91.971						
10	. 364	2.797	94.768						
11	. 263	2.024	96.793						
12	. 246	1.890	98.682						
13	. 171	1.318	100.000						

Extraction Method: Principal Component Analysis.

Rotated Component Matrix(a)

	Component		
	1	2	3
Employees here do not get on with each other		-. 401	. 573
Work interferes with my social life	. 328		. 729
I spend too much time travelling to work			. 823
I can always manage to solve difficult problems if I try hard enough		. 752	
If someone opposes me, I can find the ways and means to get what I want		. 678	
I am certain that I can accomplish my goals	. 363	. 682	
I am confident that I could deal efficiently with unexpected events	. 589	. 552	
Thanks to my resourcefulness, I can handle unforeseen situations	. 644	. 492	
I can solve most problems if I invest the necessary effort	. 465	. 544	
I can remain calm when facing difficulties bce I can rely on my coping abilities	. 776		
When I am confronted with a problem, I can find several solutions	. 829		
If I am in trouble, I can think of a good solution	. 768		
I can handle whatever comes my way	. 703		

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a Rotation converged in 6 iterations.

ANSWERS TO MULTIPLE CHOICE QUESTIONS

[^0]
[^0]: 1
 2 (d)
 3 (a)
 4 (d)
 5 (e)
 6 (d)
 7 (c)
 8 (e)
 9 4; 46.193; 8.

